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Abstract 

The concept of a reaction network, initially suggested by Ugi and coworkers, in the 
framework of the graph-theoretical model of organic chemistry is elaborated. The reaction 
network for a pair of isomeric educt molecular (GE) and product molecular graphs (Gp) is 
determined as an oriented graph. Its edge, beginning at a graph-vertex (7._ l and ending at 
a graph-vertex Gi, corresponds to a feasible transformation (chemical reaction)con- 
strained by a condition of descending chemical distance from the product graph Gp, i.e. 
CD(G. _ a' Gp) > CD(G i, Gr, ). In the reaction network, an oriented path which begins at G E 
and ends at Gp corresponds to the decomposition of the overall transformation G E ~ Gp 
into a sequence of "elementary" transformations G O = G B =~ G 1 =~ G2... :=~ G/_ t =~ G/ 
= Gp that may be assigned to intermediates of the overall transformation. 

1. Introduction 

The graph-theoretical model [1-6] of organic chemistry offers very simple 
yet sufficiently diverse formal tools for the description of chemical structures and 
reactions [7]. A similar idea was first conceived by Ugi and Dugundji [8,9] in the 
framework of  their famous matrix model of constitutional chemistry. 

The graph-theoretical model can, loosely speaking, be understood as an alterna- 
tive formulation of  the Ugi and Dugundji matrix model; instead of  matrices, it employs 
the notions and concepts of  graph theory. Moreover, this transfer from matrices to 
graphs allows the use of  the very rich and flexible formal tools of  the graph theory. 
Accordingly, many theoretical and algorithmic problems of  the model can be formu- 
lated and considered very effectively and transparently by making use of  the theoretical 
machinery of  graph theory. In particular, different graph metrics (e.g. chemical distance, 
reaction distance, etc.) can be introduced in a straightforward way. 

The purpose of  this communication is to formulate a graph-theoretical approach 
for the construction of  the so-called reaction network. For a pair of  educt and product 
compounds (represented by an educt graph G E and a product graph Gp, respectively) that 
are mutually related by an overall transformation (chemical reaction) G E =:> Gp, we 
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construct an oriented graph (called the reaction network) whose vertices correspond to 
intermediates of the transformation [7]. In order to overcome a possible combinatorial 
explosion in the construction of intermediates belonging to the reaction network, the 
process of its construction should be controlled by a mandatory requirement of 
decreasing chemical distances for the intermediates in going from the educt graph to the 
product graph. Such a criterion corresponds closely to the principle of minimal struc- 
tural change, which is well-known in organic chemistry [10, 11 ]. Ugi and Dugundji [8] 
initially called attention to this principle in the form of their principle of minimal 
chemical distances as a heuristic rule. It took into account only those intermediates of 
the transformation G E ~ Gp that are closer (from the standpoint of the chemical metrics) 
to the product graph. 

The reaction network constructed in such a way has the following simple 
chemical interpretation: An oriented path of the reaction network which begins at the 
educt graph and ends at the product graph represents a synthetic route going through 
intermediates that are increasingly more and more "similar" to the target product graph. 
A similar intuitively formulated approach has recently been used by Ugi et al. [12-14]. 

2. Basic concepts 

Let us postulate that a graph G is a formal structure [15,16] composed of a 
nonempty vertex set V(G) = { v 1, v 2 . . . .  }, edge set E(G) = {e:, e 2 . . . .  }, and a mapping 
¢: E(G) ---> {0, 1, 2, 3 . . . .  }. An edge of E(G) incident with two vertices v:, v 2 ~ V(G) 
will be denoted by {v:, v2}; if v: = v z, then this edge is often called a loop. In our 
forthcoming considerations, we shall always assume that the graph G does not contain 
multiple edges. The mapping ~ evaluates each edge of E(G) by a positive integer: it can 
be extended outside the edge set E(G) in such a way that an edge e ~ E(G) has a zero 
evaluation. The nonnegative integer ~(e), assigned to an edge e, will be called the 
multiplicity, i.e. the edges of zero multiplicity do not belong to E(G). Hence, the graph 
G is fully determined by the following ordered triple 

G = (V, E, ~b), (1) 

where V = V(G) and E = E(G). The chemical interpretation of the above-introduced 
graph is very simple: The vertices correspond to atoms, the edges correspond to bonds 
with the same multiplicity as the edges, and loops correspond to lone electron pairs. 

Two graphs G 1 = (V l, E:, ~1) and G 2 = (V 2, E 2, ¢2) are isomorphic (G: = G 2) iff 
there exists a 1:1 mapping (called the isomorphism) 

Z:  V(G1) ---> V(G2) (2) 

that preserves adjacency of vertices and evaluation of edges. That is, for each pair of  
adjacent vertices v 1, v 2 e V(G1), the mapped pair of vertices Z(V:), Z(v  2) is also 
adjacent and the evaluations of the corresponding edges are of the same value, 
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{v 1, 192} e E(G~) ¢:~ {Z(D~),X(1)2) } ~ E(G2), (3a) 

v2}) = Z(v2)}). (3b) 

Two graphs G 1 and G 2 are isomeric [7] (G 1 -~ G z) iff they have the same number 
of vertices and the sums of evaluations of edges are identical, formally, 

IV(G~)I = IV(G2)I, (4a) 

]~ ~l(e)= ]~ ~(e), (4b) 
e ~  E(G1)  e ~  E(G2)  

where IXl denotes the number of elements (cardinality) of a set X. 
A graph G • is called a subgraph of the graph G (G' c G ) i f f V ( G ' ) c V ( G ) ,  

E(G') c E(G), and 

Ve ~ E(G'): ¢'(e) < ~O(e). (5) 

The concept of isomerism determined over a universe of graphs can be formally 
considered as a realization of an "equivalence" between abstract elements. Hence, the 
universe of graphs can be decomposed into disjoint families of mutually isomeric 
graphs. The family o f  isomeric graphs ~q is composed of all possible graphs deter- 
mined as follows: 

fpq  = {G = (V ,E ,  9); IVI = p and ~ He) = q}. (6) 
e ~ E(G)  

A common subgraph of two graphs G 1 and G 2 is a graph G which is simultane- 
t # • t ously isomorphic to the subgraphs G1 ~ G~ and G 2 c G 2, i.e. (~ = G1 = G 2. A maximal 

common subgraph of GI and G z, denoted by G~ n G z, is a common subgraph with the 
largest possible sum of edge evaluations, 

He) = max, (7) 
e E E(G1 c~ G2) 

where ¢ is the mapping of the maximal common subgraph G 1 n G z. The chemical 
distance between two isomeric graphs G 1 and G 2 from ~q is determined as follows [7] 
(cf. also refs. [17,18]), 

CD(G l ,  G2 ) 

= ~ q~l(e)+ ~ ~ ( e ) - 2  ~ H e ) = 2 [ q  - Z He)].  (8) 
e E E(G1)  e ~ E(G2) e ~ E(G1 ~ Gz)  e ~ E(G1 n G2) 
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In our recent publications [7,19], we have demonstrated that the chemical distance thus 
defined is a metric, i.e. it satisfies all three attributes of an abstract metric: symmetry, 
positive semidef'miteness, and triangle inequality. We have to emphasize that 
CD(G r G 2) = 0 iff G 1 -- G 2. 

A group of automorphisms F(G) = { a~, ct 2 . . . .  } of the graph G is composed of 
1 : 1 mappings 

a: V(G) --~ V(G) (9) 

that conserve the adjacency of vertices and evaluation of the corresponding edges, 

(V:, V:} e E(G) ~ {ct(v:), a(19z) } ~ E(G), (10a) 

¢ ( { V  1, 1)2}) = ¢ ( { a ( ' O l )  , a ( ' 02 )} ) .  (lOb) 

Two distinct vertices v:, v 2 ~ V(G) are called topologically equivalent iff there exists 
a nontrivial automorphism a ~ F(G) that transforms the vertex v x into another one v 2, 
a(v:) = v 2. This means that if the graph G has a nontrivial group of automorphisms (i.e. 
IF(G)I > 1), then the vertex set V(G) may be decomposed into disjoint subsets of 
topologically equivalent vertices. 

3. Reaction graphs 

The notion of a reaction graph has been introduced by the present authors [20] 
as a proper graph-theoretical tool [7] to express a transformation G 1 ~ G 2, where 
G:, G~ e Z .  The same term "reaction graph" was used previously by Balaban and z pq ,, 
coworkers [26]; in their approach it corresponds to an analogy of the concept reaction 
network", specified below. The term "reaction graph" we have used [20] as a graph- 
theoretical counterpart of  Ugi's concept of the reaction matrix [8]. The reaction graph 
is unambiguously constructed for a given pair of graphs G:, G 2 off the basis of their 
maximal common subgraph G: n G2; the approach is closely related to Ugi's [8,9] 
principle of minimum chemical distance as a very important heuristic tool for the 
construction of reaction graphs. In this section, we shall give a more general presenta- 
tion of reaction graphs; they will be defined independently of a graph G as a formally 
simple tool used to transform one graph into another one. 

The reaction graph G R is determined by a nonempty vertex set V(GR) 
= {w:, w 2 . . . .  }, edge set E(G R) = {fl'f2 . . . .  }, and a mapping 

g¢: V(G) --> {0, +1, +2 . . . .  } ( l l a )  

that assigns to each edge f ~ E(GR) a nonzero integer restricted by the following 
condition: 
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]~ I/~f) = O. ( l l b )  
f~ E(GR) 

The mapping vand  the condition (1 lb) have a very instructive chemical interpretation: 
An edge of G R evaluated by a positive/negative integer corresponds to a created/ 
annihilated edge (edges) in a graph G. The relation (1 lb) expresses a condition of strict 
"stoichiometry" for the transformation induced by the reaction graph G R, i.e. the educt 
and product graphs are isomeric. In a similar way as for graphs, the mapping v m a y  be 
extended outside of E(GR), the edges f ~ E(GR) are evaluated by Ig(f) = 0. 

Now let us focus our attention on how to specify the reaction graph G R so that, 
when applied onto a graph G, it produces a new graph G' isomeric to the parent one (i.e. 
G, G' ~Yoo or, in other words, the transformation G =0 G' is strictly "stoichiometric"). 
Since the r'vertex sets of G and G R are, in general, different, we have to introduce a 1 : 1 
mapping of V(GR) onto a subset V ( G ) c  V(G), 

o9: V(G R) --~ V(G). (12) 

This mapping specifies the correspondence between vertices of the reaction graph G R 
and vertices of a subgraph of G induced by the subset V(G). In our forthcoming con- 
siderations, we shall use an inverse mapping ¢o-I:V(G) ---) V(GR) extended outside of 
V(G) to the whole vertex set V(G), where og-l(u) = z, for each v E V(G)\V(G) and z is 
a "virtual" vertex which does not belong to V(GR). The resulting graph G' formed from 
the graph G by making use of the reaction graph G R and the mapping o9 is formally 
determined as an ordered triple 

(G, o9, GR) = G'. (13) 

Its vertex set V(G') is equal to the vertex set V(G); the edge set E(G') is determined 
through the mapping g}' as follows: 

~'({1)1' 1)2 I) = ~({~1' 1)2 }) + IPr({og-I(D1)' o9-1(~2)})" (14) 

We call the transformation (13)feasible iff the mapping 4' is nonnegative, 

4'({'!) 1, 1)2} ) )--- 0. (15) 

In the opposite case, when for a pair of vertices v 1, 1)2 ~ V(G) we have g/({1)1' v2}) 
< 0, the reaction graph G R specified by the mapping o9 is inapplicable to the graph G. 
Hence, the edge set E(G') of the graph G' produced by a feasible transformation 
(G, o9, G R) is determined by 

E(G') =  21)> 0}. (16) 
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The chemical distance between the graph G and the resulting graph G' is bounded by 

Iq'ff)l --- CD( G, G ") > O. (17) 
f e  E(Grt) 

The left-hand side inequality immediately follows from the fact that the notion of 
chemical distance was defined via the maximal common subgraph of G and G'; 
therefore, its even integer value should be minimal with respect to all possible reaction 
graphs that can be applied to the original graph G. The right-hand side inequality 
implies that the chemical distance CD(G, G') is nonnegative, a property which is in 
accordance with the fact that the chemical distance is a metric. 

Let us consider two feasible transformations 

(G, 091, GR) = G v (18a) 

(G, 092, GR) = G 2, (18b) 

The resulting graphs G 1 and G 2 are produced by the application of the same reaction 
graph G R to the original graph G; the transformations (18a,b) are different only in 
mappings 091 and o) 2, where 09a ¢ o92" We say that the mappings 09x and o92 are equivalent 
(091 -= °92) iff the produced graphs G~ and G 2 are isomorphic, 

091 -=- ('02 ¢=> Gi = G2" (19) 

It is easy to show that the mappings co 1 and o92 are equivalent iff they are related by 

091 = a 092fl' (20a) 

where a and fl are automorphisms of the graph G and the reaction graph G R, respec- 
tively, a ~ F(G), fl ~ F(GR), formally. 

4. Reaction network 

In our recent communications [7,21], we have introduced the so-called graph of 
chemical distances ~qO. Its vertex set V(9~.~) is identical with the family of isomeric 
graphs .T__. Two vertices (graphs) G., G.P~ V(G c°) are adjacent iff their chemical 

. p q  t z ~ P q  C D  
distance equals two, i.e. CD(G 1, G2) = 2 ~ {G 1, G2} ~ E ( ~  ). This requirement 
follows immediately from our definition of the chemical distance (8). Its value between 
two nonisomorphic but isomeric molecular graphs is even, i.e. its possible minimum is 
equal to two. Moreover, we have demonstrated that the chemical distance between an 
arbitrary pair of graphs Ga, G 2 E ~pq is equal to twice the graph distance between the 
same graphs in Gco. Let us select two vertices-graphs G E (educt graph) and Gp (product 
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graph) in GCq °, then all paths that are connecting these graphs may be formally con- 
sidered as a synthetic step-by-step route for the fixed educt and product graphs; the 
graphs lying on a path are, loosely speaking, interpreted as intermediates of the 
synthesis route. This simple and transparent interpretation of paths in the graph of 
chemical distances does not correspond in many cases to the usual meaning of inter- 
mediates as relatively stable compounds. Many graphs from a path connecting G E and 
Gp may correspond to compounds with, for example, quite exotic valence states of 
atoms [7]. In order to remove this drawback of G c° used as a background for the 
construction of synthetic routes of the overall trans(oer]nation [7] G E :=> Gp, we suggest 
another approach called the reaction network, involving only stable (or relatively stable) 
intermediate compounds. First, we have to introduce a set GR of preselected non- 
isomorphic reaction graphs; this set is composed of those reaction graphs that are typical 
of simple synthetic steps. The reaction network is determined as a directed graph, its 
vertices are some graphs (including G and G ) from ~ .  A pair of these graphs G~ and 

E P r~" 
G 2 is connected by an oriented edge beginning at G~ and ending at G 2 if (i) there exists 
a reaction graph G R ~ GR and a mapping 09 such that 

(G x, co, GR) = G 2 (21) 

is a feasible transformation, and (ii) the chemical distances of G~ and G z from the educt 
graph G E and the product graph Gp are restricted by 

CD(G a, Gp) > CD(G 2, Gp), (22a) 

or, equivalently, 

CD(G1, GE ) < CD(G2, GE). (22b) 

Moreover, we shall postulate that the educt (product) graph G~. (Gp) is incident only 
with outgoing (incoming) oriented edges and the remaining graphs are incident, at least, 
with one incoming and one outgoing oriented edge. An oriented path beginning at G E 
and ending at Gp has the following chemical interpretation: It represents a synthetic 
route to Gp from G E via intermediates satisfying the principle of minimal structural 
change [10,11] (often used in organic chemistry as an important heuristic), expressed 
in our graph-theoretical model by the conditions (22) of decreasing chemical 
distance [7] between successive intermediates and the product graph Gp. 

Each oriented edge of the reaction network can be evaluated by a positive integer 
expressing a lowering of the chemical distance from the product graph. In particular, let 
us consider an oriented edge beginning at Gt and ending at G z, and let these graphs be 
related by a feasible transformation (21) restricted by the conditions (22). Then, this 
edge will be evaluated by a positive integer 

ACD(Gt, G2) = CD(G I, Gp) - CD(G 2, Gp). (23) 



316 V. Kvasni(ka, J. Posplchal, Ugi's concept of the reaction network 

This reflects an "order" of fitness of the graph G 2 to the product graph Gp achieved by 
a feasible transformation (21). Its increased value indicates a longer "jump" toward the 
product graph Gp in the synthetic mute going from an intermediate graph G 1 to another 
intermediate graph G 2. It is easy to demonstrate that an upper bound of ACD(G 1, G 2) 
is 

[gt(f)[ > ACD(G1 ,G2), (24) 
f~  E(GR) 

i.e. the maximal possible value of ACD(G 1, G 2) is equal to the number of all edges that 
are created and annihilated by the transformation (21). 

Let us consider an oriented path in the reaction network which begins at the educt 
graph G E and ends at the product graph Gp, and let this path be composed of a sequence 
of (n + 1) vertices-graphs 

Go = GE --) G1 " - )  G 2 "  " " Gn -1 ~ Gn = Gp. (25) 

This path contains n oriented edges. The sum of their evaluation exactly equals the 
chemical distance between G E and Gp, 

n 

~_, A CD(Gi_ I , Gi ) = CD(GE, Gp). (26) 
i = 1  

Introducing the inequality (24) into (26), we obtain 

/I 

~ I~i(f)l > CD(GE,Gp), 
i= 1 f~  E(G~')) 

(27) 

where G(R i) ~ GR is a reaction graph assigned to the ith oriented edge in (25). The sum 
of edge evaluation is equal to the chemical distance CD(G E, Gp) only if the given 
path (25) in the reaction network is going through the "shortest" corresponding path in 
the graph of chemical distances G cD. 

Pq 
Recently, Ugi et al. [12-14] have suggested the so-called bilateral approach 

(cf. also ref. [7]) for a construction of the reaction network; in the appendix, we present 
a very simple and transparent depth-first search algorithm for its construction. 

5. Illustrative example -Fischer indole synthesis 

The theory of reaction networks outlined in the previous section will be illustra- 
ted by the Fischer indole synthesis [22] (see fig. 1). Here, an arylhydrazone of a ketone 
is treated with a catalyst (usually zinc chloride), whereupon elimination of ammonia 
takes place and an indole is formed. A simplified mechanistic step-by-step decom- 
position [22] of the overall Fischer synthesis into simple [1, 3] and [3, 3] sigmatropic 
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R' R o 
I I ~c . .  c/R 

N/N ~ N C ~ / C - R  

M H 

+ NH 3 

Hg'" I1~ R' R 

L~NC N~ 

Ms 

Fig. 1. The Fischer indole synthesis. The bottom scheme repre- 
sents an indexing of atoms that are involved in the reaction. 

R' H R' M 
\ C  / 
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A ~ H 

(E) (IM1) 
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R' 14 R' 1.4 
j C . , . . .R  ~ C  R 

N -N 
N- M 

M 

( IM2)  ( IM3)  
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R: ~H H ' H 
,-f"~c:,.q'#N~ ® ~ c ' c -  R ÷ ~-H 

N/C.R N ~L~'/JL" N/ N 
l 14 

(IMp) (P) 

Fig. 2. A mechanistic decomposition of the Fischer indole synthesis; the steps 1, 3, 4, and 
5 (2) are simple [1, 3] ([3, 3]) sigmatropic rearrangements. The numbers in boxes express 
the chemical distance of a given compound from the product compound. In some special 
cases, in particular for E, IM a, and IM 4, there exist pairs of topologically equivalent 
hydrogens; the selection of one of them in our reaction mechanism was made arbi~arily. 
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rearrangements is outlined in fig. 2, where the protonated forms were ignored. There is 
much evidence for this mechanism. In particular, the intermediate IM s can be detected 
spectroscopically: the intermediate IM 4 was isolated, and 15N labeling experiments 
show that the fl-nitrogen (farther from the benzene ring) is eliminated as ammonia. 

8 

9 6 3 4 1 5 7 6 
t, 

(1) 

k.  ..... 

8 

4 

) 
¥ 

8 

1,.<.~5 
4 

Fig. 3. The reaction graphs assigned to single mechanistic steps of the Fischer indole 
synthesis presented in fig. 2. The indexing of vertices (atoms) is given in the bottom scheme 
of fig. 1. The hexagonal reaction graphs in the second and third rows correspond to the 
"sum" of GR(1], GR(2)and G~ 1), GR(2), GR(S), respectively. 

Figure 3 shows the reaction graphs that are assigned to the respective single mechanistic 
steps, where the square (hexagonal) reaction graphs correspond to [1, 3] ([3, 3]) 
sigmatropic rearrangement. 

The maximal common subgraphs of educt and product compounds are given in 
fig. 4. We see that the maximal common subgraph denoted by MCS B is in contradiction 
to the above-mentioned experimental observation that the t-nitrogen of the educt 
compound is eliminated as ammonia. In fact, the right (product) compound contains an 
N-H bond from ammonia which is matched to a similar bond from the left (educt) 
incident with a-nitrogen. The reaction graphs of the Fischer indole synthesis con- 
structed on the basis of maximal common subgraphs given in fig. 4 are presented in 
fig. 5. Here, it is interesting to note that the "sum" of the reaction graphs in fig. 3 (first 
row) gives the reaction graph A corresponding to the maximal common subgraph 
MCS A. Hence, we may say, loosely speaking, that the proposed mechanism of the 
Fischer indole synthesis (fig. 2) from a global standpoint satisfies the so-called principle 
of minimal chemical distance [7-9], but the partition of the mechanism into single 
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HHR" 
H \1/  R' 
C-c-  . 

I H 
H H 

(MCS A ) 

MHR' 
H \ I /  

! 
H 

R' 
I H 

F y% , -R + N-H 

H 
H 

(MCS B) 

Fig. 4. Two maximal common subgraphs of the 
educt and product molecular graphs (compounds). 

+ + ~8 
6 , ~ 4 

{A) (B) 

Fig. 5. The reaction graphs of the Fischer indole synthesis constructed 
by making use of the maximal common subgraphs given in fig. 4. 

mechanistic steps obviously violates this principle. The chemical distances of educt and 
intermediate compounds from the product compound are not monotonically decreasing 
from CD(educt,product) = 12 to zero chemical distance. There exists a singular inter- 
mediate IM 2 with CD(IM2,P ) = 10 slightly higher than CD(IM1,P ) = 8 corresponding 
to a precursor IM 1 of the intermediate I M  2 (see CD's in fig. 2). In order to overcome this 
discrepancy of the proposed mechanism with the requirement of a monotonically 
decreasing chemical distance (a heuristic role) in going successively from the educt to 
the product via intermediates, we may use an artificial procedure of merging the second 
and third mechanistic steps into a single step. This is formally expressed by the "sum" 
of the reaction graphs ~ (2) and G(3); the merge is expressed by the reaction graph v R 
GR~2) @ GR~3) displayed in the second row in fig. 3. Moreover, we may continue this 
merging of reaction graphs; for example, the first three reaction graphs that produce the 
crucial intermediate IM. (see fig. 2) may be merged into one hexagonal reaction graph, 
denoted by GR°) ~ GRC~ (9 GRCS) in fig. 3. This means that two [1, 3] and one [3, 3] 
sigmatropic rearrangements are merged into a single synchronous electrocydic process. 
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The final transition from the intermediate IM 3 to the product (indole) via an inter- 
mediate can be carded out in two different ways. The first reaction path is identical to 
that shown (going via IM4) in fig. 2, the second reaction path involves another inter- 
mediate denoted by IM 4 (see fig. 6). The whole reaction network of the Fischer indole 
synthesis is of great complexity; here, we have presented only the part relevant for the 
elucidation of the reaction mechanism. 

R' N 
1C.~. ,.R 

~ "N N. N 
/ 

N 

(IH 2 ) 

R' 14 R' N 

.c - I  H c .  
'~N'H I 

H 

(IM 3 ) ( iN4) 

R, R'l 
R 

C" NFI~ " . ~ .  I/J... NM 2 
I ":"/ "NH2 

(IM'3) ( IM'4 ) 

R' | 

N / 
I 

Fig. 6. Three alternative reaction paths going from the intermediate IM 2 to the product P 
(indole and ammonia). All these paths satisfy the criterion of decreasing chemical 
distance.The paths going through the intermediate IM~ or IM 4 do not contain the spec~'os- 
copically observed intermediate IM 3 and the isolated intermediate IM 4. 

+ NH 3 

6. Summary 

The concept of reaction networks offers a very important theoretical tool for 
generating reaction paths that connect the educt and product molecular graphs (com- 
pounds). Its efficient application needs an extremely fast algorithm for the calculation 
of chemical distances between a pair of isomeric molecular graphs. Recently, this 
problem was successfully solved by Nicholson et al. [23] and also by the present 
authors [24]. An original idea of Levi [25] was used: the problem of a maximal common 
induced subgraph of two graphs G 1 and G 2 m a y  be reduced to the problem of finding 
a maximal clique in the product G~ x G 2. Since the chemical distance is defined via the 
maximal common subgraph, which is not induced, in general, this approachshould be 
modified in such a way that maximal cliques of the product of line graphs G1 x G2 are 
involved. 

A conceptionally similar approach for  the construction of reaction networks 
was elaborated by Ugi and his associates [12-14]. They studied, mainly, the Streith 
synthesis and a prebiotic formation of adenine from five molecules of hydrogen cyanide. 
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The obtained results give very serious conclusions for a mechanistic elucidation of these 
two mechanisms. Similarly, in section 5 we have studied the Fischer indole synthesis, 
where it was demonstrated that our theoretical approach also produces many valuable 
conclusions for an elucidation of  mechanisms of organic syntheses. The network con- 
stmcted on the presented theoretical analysis contains potential reaction pathways, only 
one of  which has actually become reality. What is very important is that all the obtained 
conclusions are deduced on the basis of the requirement that the chemical distance 
decreases when we are going through a reaction path from the educt to the product via 
intermediates. This requirement is a heuristic, which in some cases can be violated, but 
the scope of this violation is limited. It seems likely that this criterion of decreasing 
chemical distance offers results that are acceptable for organic chemists in their contem- 
plations about elucidating mechanisms of complex overall chemical transformations. 
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Appendix 

We present here a depth-first search algorithm for the construction of a reaction 
network in the symbolic Pascal-like form. 

i := 0; q./0 := a set composed of the educt graph GE; 

repeat if I qdil > 0 then 
begin G i := an arbitrary graph of q/i; 

remove the graph G i from the set q/i; 
CDi : = chemical distance b e t w e e n  G i and Gr,; 

if  C D  i = 0 then write (G o, G 1, G 2 . . . . .  G i) 
{output of a synthetic route 

G O = G E ~ G 1 ~ G 2 . . .  G i = Gp} 
else if i < i then 

m a x  

begin i : = i +  1; 
'Ui:= the set of all graphs G ~ Z~ that are 

produced from Gi_ 1 by feas~ible trans- 
formations and their chemical distances 
from Gp are smaller t h a n  CDi_  1; 

end; 
end else i ' =  i -  1; 

until i = 0; 

Note: The  constant / ax  represents the maximal depth of the searching tree. If the 
variable i is greater than this constant, then the depth-first search construction of the 
reaction network is coming back at the higher level i - 1. 
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